

Wlasmir Cavalcanti de Santana

Um Método Robusto de Elementos Finitos Generalizados Aplicado à Mecânica da Fratura

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Carlos Alberto de Almeida

Rio de Janeiro, fevereiro de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Wlasmir Cavalcanti de Santana

Graduou-se em Engenharia Mecânica na UFPE (Universidade Federal de Pernambuco) em 1990. Concluiu o Mestrado em Engenharia Mecânica pela PUC-RJ (Pontifícia Universidade Católica do Rio de Janeiro) em 1993. Concluiu o Curso de Formação de Oficiais do IME (Instituto Militar de Engenharia) na especialidade de Engenharia Mecânica e de Armamento em 1993. Foi nomeado professor do Departamento de Engenharia Mecânica do IME em 2001.

Ficha Catalográfica

Santana, Wlasmir Cavalcanti de

Um método robusto de elementos finitos generalizados aplicado à mecânica da fratura / Wlasmir Cavalcanti de Santana ; orientador: Carlos Alberto de Almeida. – Rio de Janeiro : PUC, Departamento de Engenharia Mecânica, 2004.

158 f. : il. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Propagação de trincas. 3. Mecânica da fratura. 4. Elementos finitos generalizados. 5. Métodos sem malha. 6. Funções de enriquecimento. I. Almeida, Carlos Alberto de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Um Método Robusto de Elementos Finitos Generalizados Aplicado à Mecânica da Fratura

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos Alberto de Almeida Orientador Departamento de Engenharia Mecânica - PUC-RJ

Prof. Túlio Nogueira Bittencourt Departamento de Engenharia Civil - USP - SP

Prof. Clódio Alberto Pastro Sarzeto Departamento de Engenharia Mecânica - IME - RJ

Prof. Marcelo Amorim Savi Departamento de Engenharia Mecânica - COPPE - UFRJ - RJ

> Prof. Benedito Luis Barbosa de Andrade Departamento de Engenharia Mecânica - IME - RJ

Prof. Deane de Mesquita Roehl Departamento de Engenharia Civil - PUC - RJ

Prof. Jaime Tupiassú Pinho de Castro Departamento de Engenharia Mecânica - PUC-RJ

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 20 de fevereiro de 2004

PUC-Rio - Certificação Digital Nº 9816264/CA

À minha mãe **Nilza Cavalcanti**, por uma vida de dedicação aos filhos. (*in memoriam*)

Agradecimentos

Ao meu Deus pelo dom da vida.

À minha esposa Ana e meus filhos Lucas e Pedro por todo apoio, paciência, carinho e compreensão.

Ao meu orientador Professor Carlos Alberto de Almeida pela amizade, parceria e a oportunidade de realizar este trabalho.

Ao CNPq e à PUC- Rio pelos auxílios concedidos.

Aos meus colegas da PUC - Rio.

Aos professores que participaram da Comissão Examinadora.

Aos professores dos Departamentos de Engenharia Mecânica e de Engenharia Civil pelos ensinamentos e pela ajuda.

Ao Chefe do Departamento de Engenharia Mecânica do IME-RJ, Ten Cel Diniz, pelo apoio.

A todos os amigos e familiares que de uma forma ou de outra me estimularam e me ajudaram.

Resumo

Santana, W.C.. **Um Método Robusto de Elementos Finitos Generalizados Aplicado à Mecânica da Fratura.** Rio de Janeiro, 2004, 158p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Apesar da extensa aplicabilidade do Método de Elementos Finitos na representação e solução de problemas dos mais diversos campos da Engenharia, há ainda classes de problemas em que o seu uso encontra severas dificuldades. Uma delas está relacionada com a simulação da evolução temporal da geometria ou de condições de contorno móveis na Mecânica Computacional. Exemplos típicos destes problemas envolvem grandes deformações, propagação de trincas na mecânica da fratura, escoamentos bi-fásicos, transferência de calor em meios com mudança de fase, entre outros. Nestes casos, a tarefa do acompanhamento das modificações de geometria, dos deslocamentos nas interfaces e das descontinuidades a serem representadas pela malha de elementos finitos implica em modificações da discretização a cada passo da análise, o que requer o emprego de sofisticados procedimentos de adaptação ou de reconstrução da malha. Para atender a estas situações, duas classes de novas estratégias foram recentemente propostas na literatura: i) Métodos sem Malha, em que a discretização é estabelecida a partir de um conjunto de nós distribuídos sobre o domínio, dispensando o uso da entidade elemento e, ii) Método de Elementos Finitos Generalizados (MEFG), em que a capacidade de representação da base de funções de forma tradicionais do MEF é estendida utilizando-se funções específicas ao problema em analise.

Neste trabalho investigam-se as características destas duas classes de métodos e, suas vantagens e limitações na aplicação à análise de problemas da mecânica da fratura computacional. Da comparação do desempenho destas técnicas na solução de problemas envolvendo descontinuidades localizadas demonstra-se que o MEFG é numericamente superior aos demais, em aplicações com a análise da propagação de trincas no contexto da Mecânica da Fratura Linear Elástica (MFLE). Por este método, o campo de deslocamentos representados no MEF tradicional por funções lagrangianas é adicionado (enriquecido) localmente por funções que representam as características de descontinuidade (trinca)

presentes no contínuo de forma implícita e independente da malha. A nova base de funções incorpora também termos que representam a solução da mecânica da fratura linear elástica para os deslocamentos na vizinhança da ponta-de-trinca, mantendo as características de partição da unidade próprias do MEF. A formulação foi implementada em um programa para a análise de problemas planos juntamente com uma nova estratégia de integração numérica das equações de equilíbrio que permite eliminar o emprego de eventuais modificações da malha . Este procedimento de integração emprega uma composição das quadraturas de Gauss-Lobato e Gauss-Radau, capacitando o método à uma analise robusta sem o uso de quaisquer procedimentos de reconstrução de malha. Testes numéricos com modelos do MEFG são apresentados e discutidos , verificando-se uma boa correlação da solução numérica obtida com resultados experimentais ou outras soluções clássicas da MFLE.

Palavras-chave

Propagação de Trincas - Mecânica da Fratura - Elementos Finitos Generalizados - Métodos Sem Malha - Funções de Enriquecimento

ABSTRACT

Santana, W.C.. A Robust Generalized Finite Element Method Applied to Fracture Mechanics. Rio de Janeiro, 2004, 158p. D.Sc. Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The Finite Element Method is certainly the most generally used technique for the solution of Engineering problems. However, there are some classes of problems in which the method is still not straightly applicable. One of those is related to the simulation of problems with moveable geometry and/or boundary conditions, in the field of Computation Mechanics. Typical examples are found in fields such : large deformations, crack propagation, two-phase flow, heat transfer with phase change, and so on. In these cases, because displacements at the interfaces and the geometry are to be followed throughout the solution, a regular finite element procedure becomes too cumbersome to represent, requiring the use of sophisticated procedures for adaptation and mesh reconstruction. To overcome these difficulties, two classes of new numerical procedures have been recently proposed: i) Meshless Methods (MM), where the state-variables are interpolated by a set of node values, within the problem domain, without using element boundaries and, ii) Generalized Finite Elements Method (GFEM), where the interpolation function basis is expanded in order to accommodate specific interpolation functions, adjusted to the problem in consideration.

In this work the characteristics of these two procedures were evaluated considering their applications to numerical problem solutions, in the field of fracture mechanics. It is demonstrated that the GFEM results in a better numerical procedure considering applications to the crack propagation problem, in the context of linear fracture mechanics. In this method, the displacement fields provided by standard FEM are locally enriched by specific functions which represent, *implicitly* and *independently* of the mesh, the requirements for displacement discontinuities. The new function basis also incorporates a solution for the displacements in the neighborhood of the crack tip, obtained from linear fracture mechanics solution. The formulation has been implemented for the analysis of plane problems using a new numerical integration strategy, for numerical evaluation of the equilibrium equations. This integration procedure uses a composition of Gauss-Lobato e Gauss-Radau quadratures, assuring the method numerical robustness, with no requirements for mesh reconstruction. Numerical test solutions with GFEM models are compared to experimental and other classic solutions to demonstrate the method applicability to the analysis of linear fracture mechanics problems.

Keywords

crack propagation – fracture mechanics – generalized finite elements – meshless methods – enrichment functions

Sumário

1. Introdução	21
2. Mecânica da Fratura Computacional	26
2.1 Discretização por Elementos Finitos	26
2.2 Discretização com Métodos Sem Malha	28
2.2.1 Método de Mínimos Quadrados Móveis (MQM)	28
2.2.2 Formulação do MGSE	39
2.2.3 Método de Nuvens hp	57
2.3 Discretização Com o Método De Elementos Finitos Generalizados	66
3. Avaliação Numérica das Técnicas de Discretização	76
3.1 Problema unidimensional Considerado	76
3.2 Métodos de Partição da Unidade	78
3.2.1 Aproximação pelo Método de Elementos Finitos Tradicional	78
3.2.2 Aproximação Sem Malha.	83
3.2.3 Método de Elementos Finitos Generalizados.	87
3.3 Conclusões	91

4. O MEFG Aplicado à Mecânica da Fratura	94
4.1 Discretização da trinca.	94
4.2 Generalização do modelo	97
4.3 Descrição das funções ponta-de-trinca.	98
4.4 Definição da função salto.	101
4.5 Escolha dos nós enriquecidos	101
4.6 Integração numérica	104
4.7 Integração Numérica Para o MEFG aplicado à Mecânica da Fratura	107
4.8 Critério para a determinação da direção de propagação	113
4.9 Fatores de intensidade de tensão	114
5. Testes Numéricos	118
5.1 Placa Retangular com Trinca de Aresta, sob Tração	118
5.2 Placa Retangular com Trinca de Aresta sob Cisalhamento	120
5.3 Placa Plana com Trinca Inclinada	121
5.4 Placa Plana com Trinca de Aresta Inclinada	124

5.5 Placa Plana com Trinca em Arco	125
5.6 Trincas Emanando de um Furo	127
5.7 Propagação de Trinca Central Inclinada Em Placa Plana	131
5.8 Propagação de Trincas em Placa com Furos Submetida à Flexão	134
5.9 Propagação de Trinca em Corpo de Prova DCB (<i>Double Cantilever Beam</i>)	136
5.10 Propagação de Trinca em Elemento Estrutural	138
6. Conclusões	141
7. Referências Bibliográficas	144
Apêndice I	151
Apêndice II	152
Apêndice III	154
Apêndice IV	155
Anexo I	158

Lista de Figuras

Fig 2.1 Elementos finitos para a análise de Mecânica da Fratura;	27
Fig 2.2 Construção da roseta de elementos singulares;	27
Fig 2.3 Elemento obtido do colapso de nós em uma face (pentaedro) para análise tridimensional.	28
Fig 2.4 : Domínios de influência circulares e retangulares [9]	29
Fig 2.5 : Exemplo típico de definição do domínio S_J	32
Fig 2.6 : Domínio de influência do nó 1	36
Fig 2.7 : Funções de Forma do MGSE	36
Fig 2.8 : Acoplamento MEF – MGSE [22]	39
Fig 2.9 : (a) Estrutura de células de integração e (b) Malha de elementos finitos	52
Fig 2.10 – Relação espacial entre domínios radiais de influência (suporte circular) e células de integração.[23]	43
Fig 2.11 – Relação espacial entre domínios de influência retangulares e células de integração [23].	43
Fig 2.12 – Estrutura de células de integração onde os domínios de influência de dois pontos de Gauss são apresentados [9].	45
Fig 2.13 – Domínios de influência de nós adjacentes a uma trinca; a região indicada é removida do domínio de influência [26].	47
Fig 2.14 – Curvas de isovalores da função peso e da função de forma associada aos nós adjacentes a uma trinca [34].	47
Fig 2.15 – Funções de forma de nós adjacentes a uma trinca (critério de visibilidade) [9]	48
Fig 2.16 – Sistema local de coordenadas na ponta da trinca	50
Fig 2.17 – Viga em balanço considerada para comparação com a solução analítica de Timoshenko e Goodier	52

Fig 2.18 (a) distribuição uniforme de nós e (b) malha de integração correspondente.	distribuição uniforme de nós e (b) malha de integração nte. 53	
Fig 2.19. Tensão normal (σ_{xx}) ao longo da altura da viga, para $x = L/2$ (modelo de 270 nós). Os círculos indicam a solução discreta e a linha cheia representa a solução analítica.		
Fig 2.20. Tensão normal (σ_{xx}) ao longo da altura da viga, para <i>x</i> = L (modelo de 270 nós).	55	
Fig 2.21. Tensão de cisalhamento ao longo da altura da viga (modelo de 270 nós) Os gráficos são idênticos para $x=L/2$ e $x=L$.		
Fig 2.22. Tensão de cisalhamento ao longo da altura da viga, para $x=0$ (modelo de 270 nós).		
Fig 2.23 – Cobertura de $\Omega \bullet$ em 2D, (a) com árculos centrados nos nós,(b) com elipses e retângulos. [36]		
Fig 2.24 – Funções 2D do método de nuvens hp: (a) $\varphi_{\alpha}^{k=0}$; (b) $y \varphi_{\alpha}^{k=0}$ e (c) $xy \varphi_{\alpha}^{k=0}$. [37]		
Figura 2.25: Aproximações locais definidas em cada suporte ω_{α} . [43]	68	
Figura 2.26: Partição da Unidade de um elemento finito uni – dimensional [43]		
Fig 2.27 Função de forma global N_{α} definida na nuvem ω_{α} , elementos triangulares [45]		
Fig 2.28 Função de forma global N_{α} definida na nuvem ω_{α} , elementos quadrilaterais [45]		
Fig 2.29 (a) Discretização p-hierárquica pelo MNhp e (b) Discretização p - hierárquica tradicional [45]	72	
Fig 2.30 Nuvens $\omega_{\alpha} e \omega_{\beta}$. Polinômios de ordem distinta $p_{\alpha} e p_{\beta}$ são associados às nuvens $\omega_{\alpha} e \omega_{\beta}$ [45]	73	
Fig 2.31 $N(x,y)$ bilinear em x=(0,0)	74	
Fig 2.32 $N(x,y)$ na figura 2.6 multiplicada por x^2	74	
Fig 2.33 $N(x,y)$ na figura 2.6 multiplicada por y^2	74	
Fig 3.1 problema unidimensional	77	

Fig 3.2 (a) Força de corpo f(x) utilizada e (b) Deslocamento u(x) ao longo da barra, considerando-se L=1, T= -2,k=10, nas equações (3.2) e (3.3).

77

Fig 3.3 Solução do MEF com malha de 20 nós e a solução analítica.	80
Fig 3.4 Solução do MEF com malha de 40 nós e a solução analítica.	
Fig 3.5 Solução do MEF com malha de 80 nós e a solução analítica.	
Fig 3.6 Solução discreta pelo MGSE com 20 nós e a solução analítica	
Fig 3.7 Solução discreta pelo MGSE com 40 nós e a solução analítica	
Fig 3.8 Solução discreta pelo MGSE com 80 nós e a solução analítica	85
Fig 3.9 Comparação entre a solução discreta pelo MGEF e a solução analítica (11 pontos de Gauss)	90
Fig 3.10 Comparação entre a solução discreta pelo MGEF e a solução analítica (14 pontos de Gauss)	90
Fig 4.1 Trinca representada em malha de elementos finitos com 4 elementos (10 nós)	95
Fig 4.2 Malha de elementos finitos com 4 elementos (9nós)	95
Fig 4.3 Representação geométrica das funções de forma: (a) modelo com descontinuidade e, (b) modelo sem descontinuidade.	96
Fig 4.4 Generalização da condição de enriquecimento em elementos planos: (a) da direção de propagação e (b) ponta de trinca	
Fig 4.5 Sistema local na ponta da trinca	
Fig 4.6 Função de forma bilinear tradicional $h_2(x,y)$	100
Fig 4.7 Função de forma enriquecida - produto $h_2(x,y)\sqrt{r} \sin(\theta/2)$ apresentando a descontinuidade associada à ponta de trinca.	100
Fig 4.8 Função de forma enriquecida - produto $h_2(x,y) \sqrt{r} \cos(\theta/2)$ $\sin(\theta)$	100
Fig 4.9 Caso Geral da propagação de trinca em duas direções	102
Fig 4.10 (a) propagação de uma trinca representada pelos segmentos $O_1V \in VO_2$; (b) Vetores $S_1, S_2, p_1 \in p_2$ utilizados na definição da função salto.	102

Fig 4.12. Enriquecimento com função ponta-de-trinca: (a) ponta-de-trinca no interior do elemento; (b) ponta-de-trinca sobre uma aresta do elemento.	104
Fig 4.13: Enriquecimento com função salto: (a) e (b) nós interceptados pela trinca e (c) elemento dividido pela trinca.	104
Fig 4.14 (a) Trinca e nós enriquecidos e (b) Detalhe dos subdomínios de integração	105
Fig 4.15 Correção da malha para a interseção nó - interseção	106
Fig 4.16 Correção da posição da ponta-de-trinca	107
Figura 4.17 Três elementos cortados pela trinca e as suas subdivisões empregadas para a avaliação da integração nos domínios.	108
Figura 4.18 Posição relativa de uma trinca em malha de elementos finitos	109
Figura 4.19 Exemplos de possibilidades de elementos cortados pela trinca com indicação dos pontos de Gauss-Legendre	109
Figura 4.20 Esquema para a integração numérica proposto	109
Figura 4.21 (a) ponta de trinca coincide com nó do elemento; (b) Distribuição de pontos de Gauss-Radau	111
Figura 4.22 : Posições dos elementos em relação à trinca para definição do procedimento de integração.	112
Fig 4.23 Domínio para integral de interação	116
Fig 4.24 Elementos para a integral de interação	116
Figura 5.1 – Placa com trinca de aresta	119
Figura 5.2 : Malhas: (a) 684; (b) 1024 e (c) 2764 elementos.	122
Figura 5.3 Trinca inclinada em "meio infinito"	123
Figura 5.4 Comparação entre solução numérica e analítica	124
Figura 5.5 Trinca de aresta inclinada	125
Figura 5.6 Trinca central em forma de arco	126

Fig 4.11 Definição do sinal da função salto S(x,y) - vide Tabela 4.1.

103

Figura 5.7 Placa com Furo circular e duas trincas	127
Fig 5.8 K _I para placa com furo circular e duas trincas.	128
Fig 5.9: malha de 2797 elementos e detalhe da representação da trinca (R/b = 0.25)	129
Fig 5.10: (a) Malha de 2566 elementos e detalhe da representação da trinca (R/b = 0.5)	129
Fig 5.11: Malha de 3006 elementos e detalhe do refinamento junto à trinca, caso (a) com a =26 mm. (R/b =0.25)	130
Fig 5.12: Malha de 3079 elementos e detalhe de representação da trinca, com $a = 90$ mm. (R/b = 0.25)	130
Figura 5.13 Trinca central inclinada considerada na análise numérica	132
Fig 5.14 Malha com 1874 elementos e detalhe da representação da malha junto à trinca	133
Figura 5.15 Trajetórias de propagação nos dois casos considerados	133
Figura 5.16 Geometria inicial do corpo de prova, com todas as cotas em polegadas.	135
Figura 5.17 Comparação com os experimentos: (a) e (b) resultados experimentais [62]; (c) comparação com a presente análise.	135
Fig 5.18 Malha utilizada na análise numérica do caso 1 - 1466 elementos	136
Fig 5.19 Malha utilizada na análise numérica do caso 2 - 2137 elementos	136
Fig 5.20 Geometria do corpo de prova utilizado.	137
Fig 5.21 Malha de elementos finitos utilizada para a análise do corpo de prova DCB	137
Fig 5.22 Detalhe da trajetória da trinca obtida.	137
Fig 5.23 Parâmetros geométricos, condições de apoio e carregamentos utilizados no experimento reportado em [64] - dimensões em mm.	138
Fig 5.24 A Malha de elementos finitos considerada no modelo	139
Fig 5.25 Propagação da trinca para os casos de viga rígida e flexível	140

Lista de Tabelas

Tabela 2.1 Programa para o MGSE	45
Tabela 2.2 - Soluções discretas para a viga engastada modelada pelo MGSE	53
Tabela 2.3 – Retângulo de Pascal. Os elementos $L_{ij} = L_i L_j = x^i y^j$ necessários para formar um polinômio completo (2.70).	58
Tabela 2.4 – Triângulo de Pascal. Os elementos $L_{ij} = L_i L_j = x^i y^j$ necessários para formar um polinômio completo (Π_k) em R ² .	59
Tabela 3.1 Solução do MEF para o problema unidimensional	81
Tabela 3.2 Solução do MGSE para o problema unidimensional	86
Tabela 3.3 Solução do MEFG para o problema unidimensional	91
Tabela 4.1 Definição do sinal de $S(x,y)$	101
Tabela 4.3: Definição da ordem de integração	112
Tabela 5.1 Valores de KI para diferentes domínios de avaliação da integral de interação	120
Tabela 5.2 : Valores de K _I e K _{II} ($psi\sqrt{in}$) para a malha 24 x 48 (1152 elementos)	120
Tabela 5.3 : Valores de K _I e K _{II} ($psi\sqrt{pol}$) para malhas não uniformes	121
Tabela 5.4 Solução para trinca de aresta inclinada	125
Tabela 5.5 Solução para trinca em arco	126

Lista de Símbolos

CQD	Como Queríamos Demonstrar
MFLE	Mecânica da Fratura Linear Elástica
MGSE	Método de Galerkin Sem Elementos
MEF	Método de Elementos Finitos
MEFG	Método de Elementos Finitos Generalizados
MNhp	Método de Nuvens hp
MQM	Mínimos Quadrados Móveis
PU	Partição da Unidade
(r, θ)	Coordenadas polares definidas na ponta-de-trinca
а	comprimento de trinca - com uma ponta
2 <i>a</i>	comprimento de trinca - com duas pontas
K _I	Fator de Intensidade de Tensão - Modo I de Fratura
K _{II}	Fator de Intensidade de Tensão - Modo II de Fratura
<i>r</i> _d	Raio empregado para definir o domínio da Integral de Iteração
h _{local}	Comprimento característico do elemento que contém a ponta-de- trinca

PUC-Rio - Certificação Digital Nº 9816264/CA

"Sê escravo do saber, se queres ser verdadeiramente livre" Lucius Annaeus Sêneca. Filósofo Romano